

CO₂CONCAP – CO₂ capture by cementitious materials in the fresh state. Influencing factors and numerical model

Summary

Concrete is the material most widely used in the To achieve this purpose, 4 cement pastes were construction industry. Its production process is produced with different amounts of CO2. responsible for a significant amount of CO₂ Compressive strength, SEM, XRD analysis and pH emissions, mainly because manufacture, which is estimated to be responsible for 5% to 7% of the global CO2 the degree of carbonation. Results suggest that emissions. Even though concrete structures can there is a maximum amount of CO₂ that can be absorb some CO₂ during their life cycle, only 8% to 28% of the reactive materials are estimated to be carbonated in the end of that period.

The aim of this research is to reduce the environmental impact of the concrete industry through the uptake of CO₂ during the concrete production phase, which would enable its application in the ready-mix concrete industry.

However, the few research works on this issue report contradictory results regarding the impact of CO₂ when added during the mixing phase, as they either an increase or a decrease in the amount of hydration products, depending on the CO₂ amount.

Thus, this research aims at understanding the impact of CO2 amount on the hydration reactions of cement in order to enable its adoption as a component mixture.

of cement measurements were performed to assess the influence on the hydration reactions and also on added to the mixture above which the properties of the cementitious material may be compromised.

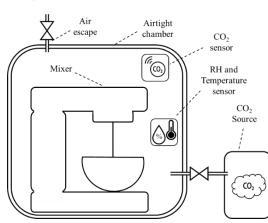


Figure 1. Carbonation during mixture equipment setup.

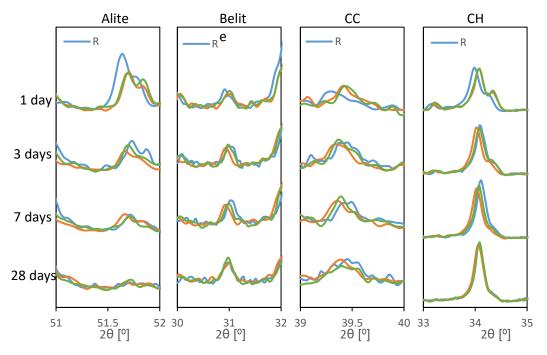


Figure 2. XRD patterns for alite, belite, CC e CH.

Project Reference

Leading Institution

CERIS – Civil Engineering Research and Innovation for Sustainability (Portugal)

Partners

CERIS Principal Investigator

Rita Nogueira (rita.nogueira@tecnico.ulisboa.pt)

CERIS Research Team

J. Alexandre Bogas, Inês Flores-Colen, Rui Ferreira, Rafaela Cardoso

Funding

CERIS – Civil Engineering Research and Innovation for Sustainability

Period

2018

Total

7 450.00€

CERIS

Project Website

